

Decryptageo 2017

 Les compétences du GéoDataScientist

Neo Geographer

Data Scientist

Thick Database

PostgreSQL

SQL++

PostgreSQLFDW

SQL++

Datas

PostgreSQLFDW

Pg Extensions

SQL++

Datas

PostgreSQLFDW

Pg Extensions

SQL++

External
lib

Datas

PostgreSQLFDW

Pg Extensions

Python

Functions

SQL++

External
lib

Datas

'' Everything is related to everything else,
 but near things are more related than distant things. ''

W. Tobler

ST_HausdorffDistance
WITH a AS (
 SELECT id, ST_Simplify(geom, 5000) AS geom
 FROM own.commune
)

SELECT a.id, b.id,
ST_HausdorffDistance(a.geom, b.geom) AS dh
FROM a, own.commune b
WHERE nom_com = 'Lyon'
ORDER BY dh ASC
LIMIT 5;

 id | id | dh
------+------+------------------
 1347 | 1347 | 185.139093997864
 1072 | 1347 | 6681.60493070321
 2461 | 1347 | 6817.89817025694
 2824 | 1347 | 7149.21791806655
 344 | 1347 | 7929.70883765602

But, could we get a bit deeper
in our (spatial) analysis ?

 Light Pollution @Night

 Open Data from : http://geodata.grid.unep.ch - 2003 Raster

WITH ln AS
(
 SELECT id, avg(px) AS light

 FROM
 (
 SELECT id, ST_Value(rast, ST_SetSrid((ST_Dumppoints(pts)).geom, 2154)) AS px
 FROM (
 SELECT id, geom AS pts FROM own.commune
) AS t , r
 WHERE ST_Intersects(rast, pts)
) AS tt

 GROUP BY id
)

UPDATE own.commune c SET light = ln.light_pollution FROM ln WHERE c.id = ln.id

Raster (light pollution) /
Vector (area)
Intersection

http://geodata.grid.unep.ch/

Light pollution by area

ALTER TABLE own.commune ADD COLUMN road_density_2016 numeric;

WITH rd AS (

 SELECT c.id,
 (SUM(ST_Length(ST_Intersection(c.geom, r.geom))) / ST_Area(c.geom)) AS road_density
 FROM own.commune c, osm.roads_2016 r
 WHERE ST_Intersects(c.geom, r.geom)
 GROUP BY c.id

)

UPDATE own.commune c SET road_density_2016 = rd.road_density FROM rd WHERE c.id = rd.id

Road density by area

SELECT corr (pop_density, light)::numeric(4,4) FROM own.commune;

0.6533

- - OSM 08/2014
SELECT corr (road_density, light)::numeric(4,4) FROM own.commune;

0.7573

- - OSM 08/2016
SELECT corr (road_density, light)::numeric(4,4) FROM own.commune;

0.7782

'' Everything is related to everything else,
 but near things are more related than distant things. ''

W. Tobler

Moran I - Spatial Autocorrelation Coefficient

1 → Strong Spatial Correlation

0 → Random

-1 → Perfectly dispersed

Humm, do we really need R ?

http://pysal.github.io/grid.html

PostgreSQL

Python Data Stack

PySAL
NumPy
SciPy
Panda

...

PostGIS

Crankshaft

http://pysal.github.io/grid.html

queen 0.8235

knn5 0.8201
knn20 0.6687
knn50 0.5220

SELECT moran::numeric(10, 4)

FROM cdb_crankshaft.cdb_areasofinterestGlobal(

 'SELECT * FROM own.commune', - - data table
'light', - - column name to check
'knn', - - weight : queen or knn
5, - - k value (for knn)

99, 'geom', 'id'
)

WITH m AS (

 SELECT aoi.*, c.id, c.nom_com , c.geom

 FROM cdb_crankshaft.cdb_areasofinterestlocal(
 'SELECT * FROM own.commune',
 'light',
 'knn',
 5,
 99,
 'geom',
 'id') As aoi
 JOIN own.commune As c
 ON c.id = aoi.rowid

)

SELECT quads, geom, ow_number() OVER() AS id
FROM u
WHERE quads = 'HH' OR quads = 'LL'

Others OSM data mining initiatives

● Contributors Metadata :

https://agile-
online.org/conference_paper/cds/agile_2013/sh
ort_papers/sp_s4.2_arsanjani.pdf

● Socio-Economical OpenData Intersection :

http://www.ciesin.org/binaries/web/global/news/
2016/bogdan_cirlugea_osm_validation_v2.pdf

http://data.grandlyon.com/

 days | count
--------------------------+------------
 Monday to Friday | 2118859
 Monday to Sunday | 2830145

WITH a AS (
 SELECT *,
 bikes::numeric / (bikes + stands)::numeric AS avl,
 extract(hour FROM timestamp) h
 FROM gl.velov
 WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5
 AND (bikes + stands) != 0
)

SELECT 'Monday to Friday' AS days, count(*) FROM a
UNION
SELECT 'Monday to Sunday' AS days, count(*) FROM gl.velov

WITH a AS (
 SELECT *, bikes::numeric / (bikes + stands)::numeric AS avl, extract(hour FROM timestamp) h
 FROM gl.velov
 WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5 AND (bikes + stands) != 0
), b AS (SELECT station id, h, avg(avl) AS avl FROM a GROUP BY id, h)
 , c1 AS (SELECT id, h, avl FROM b WHERE id = 2012)
 , c2 AS (SELECT id, h, avl FROM b WHERE id = 3001)
 , c3 AS (SELECT id, h, avl FROM b WHERE id = 1002)
 , c4 AS (SELECT id, h, avl FROM b WHERE id = 2035)

 SELECT c1.h,
 c1.avl::numeric(10,3) AS Bellecour,
 c2.avl::numeric(10, 3) AS PartDieu,
 c3.avl::numeric(10, 3) AS Opera,
 c4.avl::numeric(10, 3) AS Republique
 FROM c1, c2, c3, c4
 WHERE c1.h = c2.h AND c2.h = c3.h AND c3.h = c4.h
 ORDER BY h

 h | bellecour | partdieu | opera | republique
----+-------------+-----------+---------+--------------
 0 | 0.775 | 0.042 | 0.349 | 0.361
 1 | 0.744 | 0.065 | 0.285 | 0.307
 2 | 0.731 | 0.062 | 0.158 | 0.223
 3 | 0.725 | 0.068 | 0.136 | 0.235
 4 | 0.732 | 0.107 | 0.123 | 0.201
 5 | 0.747 | 0.238 | 0.100 | 0.177
 6 | 0.749 | 0.651 | 0.158 | 0.157
 7 | 0.545 | 0.847 | 0.143 | 0.176
 8 | 0.256 | 0.786 | 0.126 | 0.315
 9 | 0.306 | 0.815 | 0.286 | 0.692
 10 | 0.424 | 0.876 | 0.356 | 0.843
 11 | 0.510 | 0.839 | 0.322 | 0.835
 12 | 0.635 | 0.801 | 0.371 | 0.840
 13 | 0.737 | 0.793 | 0.398 | 0.902
 14 | 0.598 | 0.858 | 0.470 | 0.886
 15 | 0.611 | 0.861 | 0.531 | 0.816
 16 | 0.712 | 0.882 | 0.555 | 0.777
 17 | 0.586 | 0.854 | 0.692 | 0.790
 18 | 0.671 | 0.519 | 0.768 | 0.627
 19 | 0.744 | 0.161 | 0.829 | 0.418
 20 | 0.790 | 0.042 | 0.856 | 0.516
 21 | 0.840 | 0.042 | 0.913 | 0.690
 22 | 0.796 | 0.049 | 0.792 | 0.656
 23 | 0.794 | 0.066 | 0.568 | 0.551

http://data.grandlyon.com/

PostgreSQL

Python Data Stack

PySAL
NumPy
SciPy
Panda

...

PostGIS

Crankshaft

PostgreSQL

Python Data Stack

PySAL
NumPy
SciPy
Panda

...

PostGIS

Crankshaft

Pl/Python

CREATE OR REPLACE FUNCTION signal_correlate(a float[], b float[])
RETURNS numeric
AS $$

from scipy import signal
import numpy as np

return np.argmax(signal.correlate(a, b)) - len(a)

$$ LANGUAGE plpythonu;

 partdieu | opera | republique
 ----------+--------+------------
 4 | -1 | -1

WITH
 a AS (
 SELECT *, bikes::numeric / (bikes + stands)::numeric AS avl, extract(hour FROM timestamp) h
 FROM gl.velov
 WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5 AND (bikes + stands) != 0
)

 , b AS (SELECT station id, h, avg(avl) AS avl FROM a GROUP BY id, h)

 , c1 AS (SELECT id, h, avl FROM b WHERE id = 2012 ORDER BY h) -- Bellecour
 , c2 AS (SELECT id, h, avl FROM b WHERE id = 3001 ORDER BY h) -- PartDieu
 , c3 AS (SELECT id, h, avl FROM b WHERE id = 1002 ORDER BY h) -- Opera
 , c4 AS (SELECT id, h, avl FROM b WHERE id = 2035 ORDER BY h) -- Republique

SELECT signal_correlate(array_agg(c1.avl), array_agg(c2.avl)) AS partdieu,
 signal_correlate(array_agg(c1.avl), array_agg(c3.avl)) AS opera,
 signal_correlate(array_agg(c1.avl), array_agg(c4.avl)) AS republique
 FROM c1, c2, c3, c4
 WHERE c1.h = c2.h AND c1.h = c3.h AND c1.h = c4.h

WITH t AS (SELECT *, bikes::numeric / (bikes + stands)::numeric AS avl,
 extract(hour FROM timestamp) h
 FROM gl.velov
 WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5
 AND (bikes + stands) != 0),
 a AS (SELECT station id, h, avg(avl) AS avl FROM t GROUP BY id, h),
 h AS (SELECT id, array_agg(avl) avl, array_agg(h) h FROM a GROUP BY id),
 s AS (SELECT id, ST_Transform(geom, 2154) AS geom FROM gl.station),
 d AS (SELECT s1.id s1, lat.id s2, lat.d d FROM s AS s1 ,
 LATERAL (SELECT s2.id, ST_Distance(s1.geom, s2.geom) as d
 FROM s AS s2
 WHERE NOT s1.id > s2.id AND NOT ST_Equals(s1.geom, s2.geom)
 ORDER BY s1.geom <-> s2.geom LIMIT 25) AS lat
 WHERE lat.d < 1000),
 c AS (SELECT s1, s2, d, signal_correlate(h1.avl, h2.avl) s
 FROM h h1, h h2, d WHERE d.s1 = h1.id AND d.s2 = h2.id ORDER BY s1, s2),
 g AS (SELECT s1 id,array_agg(s2) AS ids FROM c WHERE s IN (-1, 0, 1) GROUP BY s1),
 z AS (SELECT g.id, ST_ConcaveHull(ST_Collect(geom), 0.6) , row_number() OVER() i
 FROM g, s WHERE s.id = ANY (g.ids) GROUP BY g.id)

 SELECT * FROM z WHERE id = 2012 OR id = 3001 OR id = 1002 OR id = 2035

SQL++

PostGIS
ToolBox

PG Extension

(Open) Data

Statistical
skills

Python

Skills to fully play with

PostgreSQL behaves like an extensible
and integrated Framework

(modern) SQL and Python acting as glue languages

Possible Bridge beetween
GIS and Python DataScience communities

Could be that fun !

#Conclusion

Thanks

http://www.oslandia.com

https://github.com/Oslandia/presentations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

